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Abstract

The extremely small length scale of the electric double layer (EDL) of electro-osmotic flows (EOF) in a microchannel makes it difficult
to simulate such flows and associated thermal behaviors. A feasible solution to this problem is to neglect the details in the thin EDL and
replace its effects on the bulk flow and heat transfer with effective velocity-slip and temperature-jump boundary conditions outside the
EDL. In this paper, by carrying out a scale analysis on the fluid flow and heat transfer in the thin EDL, we analytically obtain the velocity
and the temperature at the interface between the EDL and the bulk flow region. The Navier–Stokes equations and the conservation equa-
tion of energy, along with the interfacial velocity and temperature as the velocity-slip and temperature-jump boundary conditions, form a
simple model for the electro-osmotic flows with thermal effects in a microchannel with a thin EDL. We use the double distribution func-
tion lattice Boltzmann algorithm to solve this model and found that numerical results are in good agreement with those by the conven-
tional complete model with inclusion of the EDL, particularly for the cases when channel size is about 400 times larger than the Debye
length. Moreover, we found that the present model can substantially reduce the computational time by four to five times of that using the
conventional complete model. Therefore, the simplified model proposed in this work is an efficient tool for simulating electro-osmosis-
based microfluidic systems.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The electro-osmotic flow (EOF) has received consider-
able attention with the rapid development in microfabrica-
tion technologies over the last decade. In many scientific
and engineering applications, various innovative microflu-
idic systems use the electro-osmosis to pump liquids
[1–15] or control flows [16,17,24]. In comparison with other
mechanical microfluidic systems, the most important
advantage of the electro-osmosis-based microfluidic sys-
tems is that they do not require any moving components.
This greatly simplifies the design and fabrication of micro-
fluidic systems and improves the reliability of their opera-
tion. In various electro-osmosis-based microfluidic
systems, a microchannel is the simplest and primarily-used
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component. Therefore, the understanding of the electro-
osmotic flow and associated thermal behavior in micro-
channels is not only fundamentally important, but also
essential for the design of microfluidic systems.

A number of papers have reported on the study of the
EOFs in microchannels over recent years. Generally, the
models reported in the previous works fall into two catego-
ries: the complete model [18–23] and the model with exclu-
sion of the electric double layer (EDL) [24–33]. The
complete model, constructed based on the EDL theory
developed by Gouy [34], consists of three coupling differen-
tial equations: the Poisson–Boltzmann equation, the
Navier–Stokes equation and the conservation equation of
energy, which describe the change of the electric potential,
the motion of the fluid and the distribution of the tempera-
ture, respectively [19–23]. Moreover, in the complete model,
the conventional non-slip boundary condition for fluid flow
and the Dirichlet boundary conditions with a given wall
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temperature T0 and a zeta potential f for temperature and
electric potential distribution are usually specified, respec-
tively. Therefore, the complete model essentially covers
the entire channel including both the EDL and the bulk flow
region. However, the EDL thickness, represented by the
Debye length, k, is extremely small. For example, for a sym-
metric univalent electrolyte at 25 �C, its Debye length is
only about 1.0 nm for the concentration of 102 mol/m3

and 10.0 nm for 1 mol/m3 [35]. This means that for a micro-
channel with its width, h, in the range of several to several
hundreds of micrometers, the length ratio c = h/k, is up to
102–105. For this reason, when the complete model is used,
an extremely fine grid is needed to simulate the EDL, mak-
ing the total number of grids in the entire channel extremely
large. For instance, in an EOF system with c = 500 as
shown in Fig. 1, five grid nodes distributing across the
EDL region will lead to a total of about 2500 grid nodes
in y direction of the entire channel. Thus, the numerical sim-
ulation of the EOFs in microchannels based on the com-
plete model requires a prohibitive amount of memory and
consumes an extremely long computational time.

To overcome the above-mentioned problem, efforts have
been made to simplify the mathematical description for iso-
thermal EOF systems with a large c [24–33]. Generally, an
EOF can be divided into two flow regions: the EDL and
the bulk flow region. When channel width is much larger
than the Debye length, it is found the electro-kinetic effect
is confined in the EDL and the bulk EOF behaves like the
flow of an electro-neutrality fluid [24–31]. This indicates
that in the bulk flow region, the Poisson–Boltzmann equa-
tion can be eliminated and the complex electro-osmotic
body force term in the Navier–Stokes equations can also
be removed. Moreover, the EDL in such a case is rather
thin and the bulk flow is dominant in the entire channel.
As a result, it can be well justified to neglect the transport
details in the EDL and replace its electro-kinetic effect on
the bulk flow by effective slip boundary conditions. In line
of this idea, the model with exclusion of the EDL for EOFs
with a large c has been developed in the literature [24–33].
Clearly, such a model is much simpler than the complete
model, and thereby the corresponding computer memory
and the computational time being substantially reduced.

For isothermal EOF systems, the model with exclusion
of the EDL usually uses the Helmholtz–Smoluchowski
(HS) velocity, us = �efE/l, as a velocity-slip boundary
condition at the solid wall, where e, E and l represent
the dielectric constant, the applied electric field strength
h
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Fig. 1. The geometric configuration of the microchannel.
and the viscosity, respectively [24–30]. This HS velocity is
actually the velocity at the interface between the EDL
and the bulk flow region derived under the assumption that
both the velocity and electric potential gradients in the bulk
flow region are zero [26]. It is treated as a velocity-slip
boundary condition only when channel width is much lar-
ger than the Debye length. Recently, Dutta and Beskok
[32,33] have found that the HS velocity as a boundary con-
dition can be extended to the isothermal mixed electro-
osmotic/pressure driven flows with a finite EDL. In this
case, it can be obtained by extrapolating the bulk flow
velocity onto the solid wall.

Most previous investigations have been confined to the
isothermal EOFs in microchannels. Relatively, few efforts
have been made to model the EOF with thermal effects
and examine the HS velocity as a slip boundary condition
under thermal conditions. In fact, a non-uniform tempera-
ture distribution occurs in many practical electro-osmosis-
based microfluidic systems [36–38], and such a temperature
distribution exerts a significant impact on the performance
of the systems. For example, Zhao and Liao [23] have
investigated the thermal effects on electro-osmotic pumping
of liquids in microchannels. They found that the perfor-
mance of EOF pumps under thermal conditions is substan-
tially different from that under isothermal conditions.
Moreover, other works reported that the temperature gra-
dient in microchannels also crucially influences the analyte
dispersion in electro-kinetic separation [39,40] and the tem-
perature sensitive chemical process, such as the DNA
amplification in the micropolymerase chain reaction
(PCR) [41,42]. Therefore, to accurately describe these elec-
tro-kinetic phenomena, it is needed to develop a simplified
model with exclusion of the EDL for the EOFs with ther-
mal effects. Generally, a temperature gradient within
microchannels might arise from two circumstances. First,
Joule heating associated with an applied electric voltage
to the fluid may be significant when the applied voltage
and the specific electric conductivity are sufficiently high
[37,38]. Secondly, the fluid flow in channels is not in a ther-
mal equilibrium with the ambient condition when it is
cooled or heated by the surroundings. Under these circum-
stances, the temperature gradient results in variable fluid
properties [43] and affects the charge distribution in the
channel. This causes the fluid velocity in thermal EOFs
to differ from that under isothermal conditions. Therefore,
it can be expected that the conventional HS velocity
obtained under the isothermal conditions may no longer
be sufficiently accurate for the EOFs with thermal effects.

The objective of this work is to obtain a simplified
model with exclusion of the EDL for simulating the EOFs
with thermal effects in microchannels. To this end, we per-
form a scale analysis to the complete model consisting of
the Poisson–Boltzmann equation, the Navier–Stokes equa-
tions and the conservation equation of energy in the EDL
and come up with the simplified equations. By integrating
these simplified equations over the EDL, we obtain the
velocity and temperature at the interface between the



588 Y. Shi et al. / International Journal of Heat and Mass Transfer 51 (2008) 586–596
EDL and the bulk flow region. Unlike previous studies, we
do not extrapolate these interfacial conditions onto the
wall to obtain those fictitious slip boundary conditions.
Instead, considering the fact the EDL is rather small and
the bulk flow is dominant in the entire channel, we directly
approximate the thermal EOFs by the bulk flow with these
interfacial conditions in this work. More specifically, we
use the Navier–Stokes equations and the conservation
equation of energy, with the interfacial velocity and tem-
perature as the velocity-slip and temperature-jump bound-
ary conditions, to form a simple model for the EOFs with
thermal effects in microchannels. We apply the double dis-
tribution function lattice Boltzmann algorithm [44] to
numerically solve this model and compare the numerical
results with those obtained by the complete model with
inclusion of the EDL [45]. The rest of the article is orga-
nized as follows: we first present the conventional complete
model with inclusion of the EDL for thermal EOFs (Sec-
tion 2). We then simplify the complete model and obtain
a simple model with the velocity-slip and temperature-jump
boundary conditions for thermal EOFs in microchannels
(Section 3). Next, we introduce the double distribution
thermal lattice Boltzmann algorithm for solving the pro-
posed model (Section 4). In Section 5, the numerical results
are compared with those obtained by the complete model
under isothermal/thermal conditions. Finally, the conclu-
sions drawn from this work are presented in Section 6.
2. The complete model with inclusion of the EDL

In this section, we outline the complete model with
inclusion of the EDL. Without losing generality, we con-
sider the electro-osmotic flow in a two-dimensional micro-
channel shown in Fig. 1, which is driven by an external
electric field applied at the both ends. When the dielectric
solid surface of the channel is in contact with an electrolytic
solution, the so-called electric double layer forms due to the
interaction of the ionized solution with the static charges
on the dielectric surfaces. The corresponding electric poten-
tial of ions, u, is related to the net electric charge density in
the solution, qe, via the Poisson equation:
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where e is the permittivity of the electrolytic solution and
depends on temperature. The net electric charge density,
qe, is usually assumed to be distributed in the channel sub-
ject to the Boltzmann distribution. For a symmetric elec-
trolyte, qe is given by [26]

qe ¼ �2n1ze sinh
zeu
kBT

� �
; ð2Þ

where n1 is the ion density in the bulk flow. The thickness
of the EDL is characterized by the Debye length [46]:
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where e is the elementary charge, z is the valence of ions,
and T0 is the reference temperature, defined to be the wall
temperature in this work. Under the effect of the applied
electric field (x direction in Fig. 1), the ionized incompress-
ible flow with the electro-osmotic body force is governed by
the Navier–Stokes equations:
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where u, v are the component of the fluid velocity in x

direction and y direction, E is the component of the electric
field strength E in x direction, and p is the pressure. In Eqs.
(4) and (5), the fluid density, q, is assumed to be con-
stant, whereas the viscosity, l, is a temperature-dependent
variable. Moreover, the conservation of mass requires that
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¼ 0: ð6Þ

In addition, due to Joule heating and heat transfer from/to
the surroundings, there exist temperature gradients in the
electro-osmotic flow. Assuming that the viscous dissipation
and the compressible work are negligibly small, the temper-
ature distribution is governed by the conservation equation
of energy:
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where T is temperature, cp is the specific heat, k and K are
the thermal conductivity and the electric conductivity of
the electrolytic solution, respectively. In this work, cp is as-
sumed to be constant, whereas k and K are temperature-
dependent variables. Eqs. (1) and (4)–(7) describe the ther-
mal incompressible EOF in microchannels. The corre-
sponding dimensionless form of Eqs. (1) and (4)–(7) are
given by

o

oX
� �e

oU
oX

� �
þ o

oY
� �e

oU
oY

� �
¼bsinh

aU
1þh

� �
; ð8Þ

oU
oX
þoV

oY
¼0; ð9Þ

oU
os
þU

oU
oX
þV

oU
oY

¼� 1

Re
oP
oX
þ 1

Re
o

oX
�l
oU
oX

� �
þ o

oY
�l
oU
oY

� �� �
þ b

Re
sinh

aU
1þh

� �
;

ð10Þ
oV
os
þU

oV
oX
þV

oV
oY

¼� 1

Re
oP
oY
þ 1

Re
o

oX
�l
oV
oX

� �
þ o

oY
�l
oV
oY

� �� �
; ð11Þ



Y. Shi et al. / International Journal of Heat and Mass Transfer 51 (2008) 586–596 589
and
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where the dimensionless quantities are defined as follows:
U = u/f, with f representing the zeta potential; X = x/h
and Y = y/h with h representing the channel width;
(U,V) = (u,v)/us, with us = �e(T0)fE/l being the HS veloc-
ity; s ¼ tus=h; h ¼ ðT � T 0Þ=T 0; and P ¼ ph=ðlusÞ. In addi-
tion, Re ¼ qush=lðT 0Þ is the Reynolds number, Pr ¼
lðT 0Þcp=kðT 0Þ is the Prandtl number, J ¼ KðT 0Þh2E2=
½kðT 0ÞT 0� is the Joule number, a ¼ ezf=ðkBT 0Þ is the ionic
energy parameter, and b = h2/(ak2) relates the thickness
of the EDL to the channel width. All the dimensionless
forms of the temperature-dependent fluid properties in
the above equations are defined as �eðT Þ ¼ eðT Þ=eðT 0Þ;
�lðT Þ ¼ lðT Þ=lðT 0Þ; �kðT Þ ¼ kðT Þ=kðT 0Þ and KðT Þ ¼
KðT Þ=KðT 0Þ.
3. The simplified model with exclusion of the EDL

Eqs. (8)–(12) give a full description of the flow and heat
transfer behavior of the electrolytic solution in the entire
channel domain, including both the bulk flow region and
the EDL. Typically, however, the EDL thickness (on the
nanometer) is much thinner than channel width (on the
micrometer), i.e., k� h. A numerical solution to Eqs.
(8)–(12) in the entire channel domain consisting of these
different length scales would require a prohibitive amount
of memory and computational time. Hence, it is essential
to simplify the complete model presented in the preceding
section. It should be recognized that when channel width
is much larger than the Debye length, the electro-kinetic
effect on the fluid flow and heat transfer behavior is con-
fined within a rather narrow region near channel walls,
meaning that in the bulk flow region, the electric potential
of ion, u, and the corresponding net charge density, qe, are
negligibly small. For this reason, the Poisson–Boltzmann
equation (8) for the electric potential is no longer required
and the electro-osmotic body force in the Navier–Stokes
equations also vanishes. Hence, based on Eqs. (8)–(12),
the governing equations for thermal electro-osmotic flows
in the bulk flow region can be written as
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The electro-kinetic effect in the EDL on the bulk flow

and heat transfer behavior can be taken into account by
the velocity and the temperature at the interface between
the EDL and the bulk flow region, which can be obtained
as follows.

Based on Eqs. (8)–(12), the governing equations for the
EOF within the EDL can be written as
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where all the dimensionless variables are the same as those
in Eqs. (8)–(12) except that the dimensionless length
Y ¼ y=k, and the dimensionless velocity component in y

direction V ¼ v=v0, with v0 = usk/h being determined by
Eq. (18). Moreover, the temperature-dependent fluid prop-
erties in Eqs. (17)–(21) are evaluated at the temperature of
the interface between the EDL and the bulk flow region,
Tb, i.e., �eb ¼ eðT bÞ=eðT 0Þ; �lb ¼ lðT bÞ=lðT 0Þ; �kb ¼ kðT bÞ=
kðT 0Þ and Kb ¼ KðT bÞ=KðT 0Þ, where the subscript ‘b’
denotes the interface between the EDL and the bulk flow
region. Based on the facts that h� k, Re� 1, and the
velocity only in x direction, Eqs. (17)–(21) can further be
simplified as
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Eqs. (23) and (24) indicate that in the EDL, the external
electric force is balanced by the viscous force in x direction
while the internal Joule heating is transferred by the heat
conduction in y direction. Substituting Eq. (22) into Eq.
(23) and performing integration over the EDL, we obtain
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Ub ¼
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k
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�lbh
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where Ub and Ub represent the dimensionless velocity and
electric potential at the interface between the EDL and
the bulk flow region, respectively; n represents the unity
vector normal to the wall and pointing to the inside of
the electrolytic solution; er ¼ io=oX þ jo=oY , with i and j

representing the unity vector in x and y direction and Y b

is the thickness of the EDL scaled by k. In Eq. (25), the first
term on the right-hand side represents the dimensionless
HS velocity evaluated at Tb and the last three terms corre-
spond to the dimensionless electric potential, the dimen-
sionless velocity gradient, and the dimensionless electric
potential gradient at the interface between the EDL and
the bulk flow region, respectively. Note that the dimension-
less electric potential gradient, ð erU � nÞ, can be expressed
by the dimensionless velocity gradient of the pure EOF
(i.e., dP/dX = 0) in microchannels, i.e.,

ð erU � nÞ ¼ � �lb
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Therefore, with Eq. (26), Eq. (25) is reduced to
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where Up = U � Ue, corresponding to the part of the bulk
flow velocity driven by the pressure gradient. The magni-
tudes of the last two interfacial terms on the right-hand
side of Eq. (27) depend upon the definition of the interface
between the EDL and the bulk flow region. The electric po-
tential can be obtained by solving Eq. (22). When the elec-
trical energy is much smaller than the thermal energy of
ion, viz. jaUj � 1, Eq. (22) can be simplified to

o2U

oY 2
¼ a2U; ð28Þ

where a ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ebð1þ hÞ

p
. Eq. (28) represents the so-called

Debye–Hückel approximation. For a univalent electrolytic
solution at room temperature, the Debye–Hückel approxi-
mation holds when the magnitude of the zeta potential is
less than 25 mV. It may be worth mentioning that the study
of electro-osmotic flows without the Debye–Hückel
approximation can be found elsewhere [47,48]. In addition
to the Debye–Hückel approximation, since the thickness of
the EDL is much smaller than channel width, we further
assume a ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ebð1þ hbÞ

p
, with hb representing the dimen-

sionless temperature at the interface between the EDL and
the bulk flow region. Therefore, the solution to Eq. (28) is

U ¼ e�aY : ð29Þ

Eq. (29) indicates that the electric potential decays expo-
nentially in the EDL. Following the work by Dutta and
Beskok [32], we define the interface between the EDL
and the bulk flow region at a location, at which the electric
potential, Ub, decays one percent of the zeta potential, f. As
a result, the thickness of the isothermal EDL is given by
Y b ¼ 4:6052 ðyb ¼ 4:6052kÞ; ð30Þ
while for thermal EOFs, the thickness is

Y b ¼ 4:6052=a ðyb ¼ 4:6052k=aÞ: ð31Þ

With Eq. (31), Eq. (27) can now be written as
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As pointed out in the preceding section, the simplified mod-
el proposed in this work treats the electro-osmotic bulk
flow as the flow of an electro-neutrality fluid. This means
for a mixed electro-osmotic/pressure driven flow, its bulk
flow behavior can be approximated as a Poiseuille flow
with the identical pressure gradient. Therefore, Up in Eq.
(32) is indeed the velocity calculated in the simplified
model. It follows that we can discard the superscript ‘p’
in Eq. (32) and rewrite it as

Ub ¼ 0:99
�eb
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þ Y b
k
h
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The corresponding dimensional form is

ub ¼ 0:99usðT bÞ þ Y bkðru � nÞb; ð34Þ
where usðT bÞ ¼ �eðT bÞfE=lðT bÞ, and r ¼ io=oxþ jo=oy.

Similarly, integrating Eq. (24) yields
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and the corresponding dimensional form is given by

T b � T 0 ¼ Y bkðrT � nÞb þ Y 2
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It is clear from Eq. (36) that the temperature at the inter-
face between the EDL and the bulk flow region, Tb, is re-
lated to the wall temperature, T0.

Eqs. (33) and (35) are the dimensionless velocity and the
dimensionless temperature at the interface between the
electric double layer and the bulk flow region. As men-
tioned in Introduction, in the limit of c� 1, since the
EDL too small to be considered, the fluid flow and heat
transfer in the entire microchannel can effectively be
described by Eqs. (13)–(16) with the interfacial conditions,
Eqs. (33) and (35). As a result, Eqs. (13)–(16), along with
Eqs. (33) and (35), form a simple model for thermal EOFs
in microchannels.

In addition, it is worth mentioning that although the
model proposed in this work is derived in a two-dimen-
sional straight microchannel, it can also be applied to other
two-dimensional microstructures with a complex geometry,
provided that the Debye length is much smaller than the
local curvature of solid surfaces.

4. Lattice Boltzmann algorithm

We now present the double distribution function lattice
Boltzmann method (DDF LBM) [44], a novel kinetic
numerical algorithm, to numerically solve Eqs. (13)–(16).
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In such a method, two basic distribution functions, the
density distribution function f and the temperature distri-
bution function g, are defined to describe the velocity field
and the temperature distribution, respectively. For a two-
dimensional problem, we can construct the DDF LBM
from the Boltzmann equation with the BGK assumption
on the following nine discrete particle velocities [49]:

ci ¼
ð0;0Þ i¼ 0;

cðcos½ði�1Þp=2�;sin½ði�1Þp=2�Þ i¼ 1;2;3;4;ffiffiffi
2
p

cðcos½ð2i�9Þp=4�;sin½ð2i�9Þp=4�Þ i¼ 5;6;7;8;

8><>:
ð37Þ

where ci is the discrete particle velocity in the ith direction
and c is the corresponding particle speed. The evolution
equation for the density distribution function f is

fiðsþ Ds;Xþ ciDsÞ � fiðs;XÞ ¼ �x½fiðs;XÞ � f eq
i ðs;XÞ�;

ð38Þ

where fi is the density distribution function in the ith parti-
cle velocity direction, s, Ds and X are the dimensionless
time, the time step and the particle position, respectively.
They are normalized by h/us (T0) and h as in Eqs. (8)–
(12). f eq

i is the local density equilibrium distribution func-
tion and is given as

f eq
i ¼ wiq 1þ ci �U

c2
s

þ cici : UU� c2
s I : UU

2c4
s

� �
; ð39Þ

where the sound speed cs ¼
ffiffi
3
p

c
3

, the weight coefficients
w0 ¼ 4

9
; wi ¼ 1

9
, for i = 1–4; and wi ¼ 1

36
, for i = 5–8, and I

is the second-rank unity tensor. In Eq. (38), x is the dimen-
sionless collision frequency for momentum. It can be eval-
uated by x ¼ 2c2

s Dt=ð2�l=Reþ c2
s DtÞ. The macroscopic

density q, and the velocity U(U,V) are defined as

q ¼
X8

i¼0

fi; qU ¼
X8

i¼0

fici: ð40Þ

The temperature distribution is described by another distri-
bution function g. When the heat source is present, its evo-
lution equation is

giðsþDs;XþciDsÞ�giðs;XÞ¼�xt giðs;XÞ�geq
i ðs;XÞ½ �þDsSi;

ð41Þ

where gi is the density distribution function in the ith par-
ticle velocity direction and the dimensionless collision fre-
quency for energy xt ¼ 2c2

s Dt=½2�k=ðRe PrÞ þ c2
s Dt�. geq

i is
the local temperature equilibrium distribution function
and is given as

geq
i ¼ hf eq

i ¼ wiqh 1þ ci �U
c2

s

þ cici : UU� c2
s I : UU

2c4
s

� �
:

ð42Þ
To describe the Joule heating in the thermal electro-osmo-
tic flows in microchannels, Si in Eq. (41) is specified as
Si ¼ wi
JK

Re Pr
1þ ci �U

c2
s

� �
: ð43Þ

Then, we can obtain

JK
Re Pr

¼
X8

i¼0

Si;

JKU

Re Pr
¼
X8

i¼0

Sici

ð44Þ

Now the macroscopic temperature is defined by gi:

qh ¼
X8

i¼0

gi: ð45Þ

Through the Chapman–Enskog procedure [50], Eqs. (38),
(39), (41) and (42), together with Eqs. (40) and (45), can re-
cover the macroscopic mass, momentum and energy con-
servation equations.

In the DDF LBM, the variables through simulations are
f and g, not the macroscopic velocity U and the tempera-
ture h. Therefore, we should transform the boundary con-
ditions of U and h given by Eqs. (33)–(35) to the boundary
conditions of f and g. We adopt the non-equilibrium
extrapolation scheme [51]. For the boundary condition of
the density distribution function, we obtain

fiðXsÞ ¼ f eq
i ðUb; q

�Þ þ f neq
i Xfð Þ; ð46Þ

where Xs, and Xf denote the position of the nodes on the
boundary and the position of the nodes in the fluid nearest
the boundary, respectively, and f neq

i is the non-equilibrium
part of the density distribution function on Xf with the par-
ticle velocity in the ith direction. f eq

i is given by Eq. (39)
and the corresponding density q* = q(Xf). For the temper-
ature distribution function g, we construct its boundary
condition as

giðXsÞ ¼ geq
i ðUb; hb; q

�Þ þ gneq
i ðXfÞ; ð47Þ

where geq
i is given by Eq. (42) and gneq

i is the non-equilib-
rium part of the temperature distribution function on Xf

with the particle velocity in the ith direction.

5. Numerical results

In this section, we use the double distribution function
lattice Boltzmann algorithm [44] to solve the simplified
model given in the preceding section for the mixed elec-
tro-osmotic/pressure driven flows in microchannels. The
numerical results from the complete model and the slip
model with the HS velocity as the boundary condition at
the solid walls are also presented.

5.1. Isothermal EOF

We first validate the present simplified model by simu-
lating the isothermal mixed electro-osmotic/pressure driven
flows in a two-dimensional straight microchannel with the
width h and the length L = 5h, as shown in Fig. 1. It is
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known under the isothermal condition, the fluid velocity
component in x direction is analytically determined to be

U ¼ U e þ U p; ð48Þ

where Ue is the velocity component in x direction driven by
the electro-osmosis while Up is the one driven by the pres-
sure gradient. For the flow with a large c = h/k, they are

U e ¼ 1:0� ðe�cY þ e�cð1:0�Y ÞÞ; ð49Þ

and

Up ¼ dP=dX
2
ðY 2 � Y Þ: ð50Þ

We carried out our simulation on a Nx� Ny ¼ 250� 50
mesh. We arrange it in the bulk flow region between two
interfaces denoting by two dashed lines shown in Fig. 1,
i.e., ðh� 2ybÞ � L, with yb being the thickness of the
EDL. We set the dimensionless pressure gradient dP/
dX = 3.0 and the outlet dimensionless fluid density
qout = 1.0. The Reynolds number Re = 0.01 and the Pra-
ndtl number Pr = 7.2. We applied the pressure (density)
boundary conditions [52] to the inlet/outlet and the non-
equilibrium extrapolate scheme, i.e., Eqs. 46 and 47, to
the upper and lower interfaces between the EDL and the
bulk flow region.

Fig. 2 compares the resulting velocity profiles obtained
from the present simplified model with the analytical solu-
tion given by Eq. (48) when c = 500. It shows that the
results given by the simplified model proposed in this work
are in good agreement with the analytical solution over the
entire bulk flow region, indicating that the model can be
regarded as an accurate approximation for isothermal
EOFs with a large c. Fig. 2 also presents the results
obtained from the complete model with inclusion of the
EDL [45] and the slip model with the HS velocity as the
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Fig. 2. The dimensionless streamwise velocity across the microchannel
under the isothermal condition. (—) the analytical solution; (s) the
simplified model proposed in this work; (*) the complete model; (.) the slip
model with the HS velocity.
boundary condition at the solid walls. It is seen that the
velocity profile predicted by the complete model is identical
to the analytical solution in both the EDL and the bulk
flow region. However, it must be emphasized that,
although accurate, the computation time using the com-
plete model is about three times longer than that using
the simplified model proposed in this work. Therefore,
the complete model is inefficient for simulation of EOFs
in microchannels. As to the slip model with the HS veloc-
ity, although it can qualitatively capture the basic feature
of isothermal EOF, it is found that its numerical results
deviate from the analytical solution with a relatively larger
error in comparison with those from the present simplified
model and the complete model. To present this point
clearly, we define an average relative error of the stream-
wise velocity as

D ¼ 1

N y

X
i

juðyiÞ � �uðyiÞj
�uðyiÞ

� 100%; ð51Þ

where u(yi) and �uðyiÞ are the numerical results and the ana-
lytical solution given by Eq. (48), respectively; Ny is the
number of grids distributed in y direction in the bulk flow
region. It is found that in this case, the error given by the
present model is 1.75% while that by the slip model with
the HS velocity is 2%. Therefore, even in isothermal EOFs,
the model proposed in this work can predict much more
accurate velocity profile than that given by the slip model
with the HS velocity.

5.2. Thermal EOF

We now present the results of simulation of the thermal
mixed electro-osmotic/pressure driven flows. The computa-
tional region in this case is the same as that under the iso-
thermal condition. We still conducted our simulation on a
Nx� Ny ¼ 250� 50 mesh by setting dP/dX = 3.0, qout =
1.0, Re = 0.01 and Pr = 7.2. We assumed that the fluid
enters the channel with wall temperature and is thermally
fully developed at the exit. The temperatures at the upper
and lower interfaces are given by Eq. (35) and the Joule
number J = 1.0. Moreover, in our simulation, the temper-
ature dependent fluid properties are given by [45]

e ¼ 305:7 exp � hþ 1ð ÞT 0

219

� �
; ð52Þ

l ¼ 2:761� 10�6 exp � 1713

hþ 1ð ÞT 0

� �
; ð53Þ

k ¼ 0:61þ 0:0012hT 0; ð54Þ

and

K ¼ KðT 0Þ½1þ 0:025T 0h�; ð55Þ

where T0 = 298 K.
Fig. 3 presents the resulting velocity profiles obtained by

the present simplified model, the complete model and the
slip model with the HS velocity for the thermal EOF sys-
tems with c = 200, 300, 400, 500. It is seen that for the ther-



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Y

U

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Y

U

(a) γ = 200 

(b) γ = 300 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Y

U

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Y

U

(c) γ = 400 

(d) γ = 500 

Fig. 3. The dimensionless streamwise velocity across the microchannel with J = 1.0. (-*-) the complete model; (s) the simplified model proposed in this
work; (.) the slip model with the HS velocity.
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mal EOF with a small length ratio c (see Fig. 3a and b), the
numerical results given by both the present model and the
slip model with the HS velocity deviate substantially from
that given by the complete model. Specifically, the slip
model with the HS velocity as the boundary condition at
the solid walls always predicts relatively smaller velocity
while the model proposed in this work predicts a larger
one. The underestimate in fluid velocity by the slip model
with the HS velocity is due to the temperature-dependent
fluid properties. As pointed out elsewhere [32], the HS
velocity is obtained by extrapolating the bulk flow velocity
onto the solid wall under the isothermal condition. It is evi-
dent that for flows with the thermal effect, the temperature-
dependent fluid properties result in the different velocity
profile from that under the isothermal condition. The HS
velocity is no longer the extrapolation of the bulk flow
velocity in a thermal EOF. Therefore, the simplification
of the HS velocity as the boundary condition is inappropri-
ate to thermal EOFs. On the other hand, in the model pro-
posed in this work, we assume the temperature-dependent
fluid properties in the EDL are constant and are equal to
their values at the interface. It is evident that such an
assumption is invalid for flows with a small c, in which
the EDL is relatively thicker and the fluid properties in this
layer vary distinctly. As a result, we obtained a relative lar-
ger fluid velocity when c is small. However, the accuracy of
the present model improves with increasing the length ratio
c. Fig. 3c and d clearly shows that when c = 400 and 500,
the velocity profile given by this simplified model are in
good agreement with that of the complete model. Such
an improvement is because the EDL in these cases become
sufficiently thin so that the fluid properties in this layer can
be simply treated as constants. To more clearly compare
the numerical results of the present model and the slip
model with the HS velocity for thermal EOFs with different
length ratios c, we further calculated the numerical errors



Table 1
The numerical errors of the both slip models in thermal electro-osmotic
flows with different length ratios c

The present model (%) The slip model with HS velocity (%)

c = 200 13.6 21.2
c = 300 5.2 19.9
c = 400 2.7 19.3
c = 500 2.7 18.8
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of the two models by Eq. (51), in which �u is replaced by the
numerical results obtained by the complete model. Table 1
presents the results. It is found that the errors of the both
models are decreased as c increases, demonstrating that the
model with exclusion of the EDL is a reasonable approxi-
mation to the actual EOFs in the limit of a large length
ratio, i.e., c� 1. Moreover, we also found that although
both the present model and the slip model with the HS
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Fig. 4. The dimensionless temperature distribution across the microchannel wi
this work; (.) the slip model with the HS velocity.
velocity simplify the detail in the EDL as an effective
boundary condition, the numerical error of the present
model is much smaller than that of the slip model with
the HS velocity for the EOF with a given c. Taking the
EOF with c = 400 as an example, the numerical error of
the present model is only 2.7% while that of the slip model
with the HS velocity is up to 19.3%. Therefore, the simpli-
fied model proposed in this work can serve as a much more
accurate tool for simulation of thermal EOFs with a large
length ratio c than the conventional slip model with the HS
velocity.

Fig. 4 compares the corresponding temperature distribu-
tions obtained by the present model and the slip model
with the HS velocity with those by the complete model
for the thermal EOF systems with c = 200, 300, 400 and
500. Being different from the velocity profiles, it is shown
that the temperature distributions given by the three mod-
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th J = 1.0. (-*-) the complete model; (s) the simplified model proposed in



Y. Shi et al. / International Journal of Heat and Mass Transfer 51 (2008) 586–596 595
els are identical in all the cases with different length ratios,
c. It is also found that the distinct difference among velocity
profiles given by the three models, as shown in Fig. 3, has a
weak impact on the corresponding temperature distribu-
tions although the conservation equation of energy (7) is
coupled with the Navier–Stokes equations (4) and (5).
The reason for this interesting phenomenon is due to the
very small Peclet number in the thermal electro-osmotic
flows in microchannels. The results in Fig. 4 clearly indicate
that both the present simplified model and the slip model
with the HS velocity are capable of capturing the heat
transfer characteristics in the EOFs in microchannels.

In addition, it is worth pointing out that as under the
isothermal conditions, using the model proposed in this
work would save substantially the computer memory and
computational time as opposed with the complete model
with inclusion of the EDL. For the thermal electro-osmotic
flows with c = 400, the computation time by the complete
model with inclusion of the EDL was about five times
longer than that using the proposed simplified model.
Therefore, the model developed in this work is much more
efficient than the complete model, which is demanded for
the design and optimization of many more complex micro-
fluidic systems.
6. Conclusion

In this paper, we have analytically derived the velocity
and the temperature at the interface between the EDL
and the bulk flow region. The Navier–Stokes equations
and the conservation equation of energy, along with these
interfacial velocity and temperature as the velocity-slip and
temperature-jump boundary conditions, form a simple
mathematical model for simulating the thermal EOF sys-
tems with a very thin EDL. We solved this model using
the double distribution function lattice Boltzmann algo-
rithm and compared the numerical results with those
obtained by the complete model with inclusion of the
EDL. We found that the present simplified model is in
good agreement with the complete model particularly when
the length ratio c P 400. Moreover, the present model
saves the computer memory and reduces significantly the
computational time as opposed with the complete model.
Therefore, the new model is more efficient for handling
more complex EOF systems, which are demanded for the
design and optimization of the microfluidic systems involv-
ing the electro-kinetic effect.
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